Keyword Analysis & Research: real rational unequal roots

Keyword Research: People who searched real rational unequal roots also searched

Are the roots of a quadratic equation real and rational?

So, the roots are real, unequal and rational. Examine the nature of the roots of the following quadratic equation. Then, we have a = 2, b = -3 and c = -1. Find the value of the discriminant b 2 - 4ac. Here, b 2 - 4ac > 0, but not a perfect square.

How can you tell when the roots are equal/unequal/irrational/rational?

How can you tell when the roots are equal/unequal, irrational/rational and how many there are from the discriminant? If the discriminant is negative, there are 2 imaginary solutions (involving the square root of -1, represented by i ). If the discriminant is zero, the equation is a perfect square (ex. (x − 6)2 ).

What does it mean when it says roots are real unequal?

What does it mean when it says roots are real unequal, and irrational? This question is addressing the discrimianant (The number in the square root of quadratic formulas). Real roots are when the discrimanent isn't imaginary. This means that you can't have a negative under the radical.

Are the roots of ax2+bx+c = 0 real and unequal?

When a, b, and c are real numbers, a ≠ 0 and the discriminant is positive, then the roots α and β of the quadratic equation ax 2 +bx+ c = 0 are real and unequal. When a, b, and c are real numbers, a ≠ 0 and the discriminant is zero, then the roots α and β of the quadratic equation ax 2 + bx + c = 0 are real and equal.